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OSCILLATION THEOREMS FOR SECOND ORDER NEUTRAL

DIFFERENTIAL EQUATIONS

B. BACULÍKOVÁ, T. LI, AND J. DŽURINA

Abstract. In this paper new oscillation criteria for the second order neutral
differential equations of the form

(E)
`

r(t) [x(t) + p(t)x(τ (t))]′
´

′

+ q(t)x(σ(t)) + v(t)x(η(t)) = 0

are presented. Gained results are based on the new comparison theorems, that
enable us to reduce the problem of the oscillation of the second order equation
to the oscillation of the first order equation. Obtained comparison principles
essentially simplify the examination of the studied equations. We cover all
possible cases when arguments are delayed, advanced or mixed.

1. Introduction

This paper is concerned with the oscillation behavior of the solutions of the second
order neutral differential equations

(E)
(

r(t) [x(t) + p(t)x(τ(t))]′
)

′

+ q(t)x(σ(t)) + v(t)x(η(t)) = 0,

where q(t), v(t) ∈ C([t0,∞)), r(t), p(t), τ(t), η(t), σ(t) ∈ C1([t0,∞)) and

(H1) r(t) > 0, q(t) > 0, v(t) > 0, 0 ≤ p(t) ≤ p0 < ∞;
(H2) lim

t→∞

σ(t) = ∞, lim
t→∞

η(t) = ∞;

(H3) τ ′(t) ≥ τ0 > 0, τ ◦ σ = σ ◦ τ , τ ◦ η = η ◦ τ .

Throughout the paper we shall assume that

(1.1) R(t) =

∫ t

t0

1

r(s)
ds → ∞ as t → ∞.

We set z(t) = x(t) + p(t)x(τ(t)). By a solution of Eq. (E) we mean a function
x(t) ∈ C([Tx,∞)), Tx ≥ t0, which has the property r(t)z′(t) ∈ C1([Tx,∞)) and
satisfies (E) on [Tx,∞). We consider only those solutions x(t) of (E) which satisfy
sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that (E) possesses such a
solution. A solution of (E) is called oscillatory if it has arbitrarily large zeros on
[Tx,∞) and otherwise, it is said to be nonoscillatory. Equation (E) itself is said
to be oscillatory if all its solutions are oscillatory.

Since the second order equations have the applied applications there is the
permanent interest in obtaining new sufficient conditions for the oscillation or
nonoscillation of the solutions of varietal types of the second order equations. We
refer the reader to the papers [1–6, 8, 9, 12–19] and the books [7, 10, 11], and the
references cited therein. The authors mainly studied delay equations.
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Grammatikopoulos et al. [9] have showed that 0 ≤ p(t) ≤ 1 together with
∫

∞
q(s)

(

1 − p(s − σ)
)

ds = ∞ guarantee the oscillation of the neutral equation
(

x(t) + p(t)x(t − τ)
)

′′

+ q(t)x(t − σ) = 0.

For the same equation Erbe et al. [7] established the oscillation criterion that
requires

q(t) ≥ q0 > 0, p1 ≤ p(t) ≤ p2, p(t) not eventually negative.

This result has been improved and generalized by other authors. We mention
Grace and Lalli [8] who studied the oscillation of

(

r(t) [x(t) + p(t)x(t − τ)]′
)

′

+ q(t)f(x(t − σ)) = 0,

under the conditions

f(x)

x
≥ k > 0,

∫

∞ ds

r(s)
= ∞,

and
∫

∞

ρ(s)q(s)
(

1 − p(s − σ)
)

− (ρ′(s))2r(s − σ)

4kρ(s)
ds = ∞,

where ρ(t) is an optional function.
Xu and Xia [17] established the oscillation of

(

x(t) + p(t)x(t − τ)
)

′′

+ q(t)f(x(t − σ)) = 0,

provided that

0 ≤ p(t) < ∞, q(t) ≥ M > 0.

Li at al. [12] studied the neutral differential equation
(

r(t) [x(t) + p(t)x(τ(t))]′
)

′

+ q(t)f(x(σ(t))) = 0.

They presented new oscillation criteria, where they required 0 ≤ p(t) ≤ p0 < ∞,
∫

∞ dt
r(t) = ∞, f(x)/x ≥ k > 0, σ′(t) ≥ 0, τ ◦ σ = σ ◦ τ, and inter alia σ(t) ≤

τ(t) ≤ t, and
∫

∞

ρ(s)q(s)min{q(s), q(τ(s))} −
(

1 +
p0

τ0

)

(ρ′(s))2r(σ(s))

4ρ(s)σ′(s)
ds = ∞,

where ρ(t) is an optional function.
The present authors tried [4] to eliminate the above-mentioned restrictions for

the delay equation
(

r(t) [x(t) + p(t)x(τ(t))]′
)

′

+ q(t)x(σ(t)) = 0.

In this paper we shall investigate the properties of delayed, advanced, and mixed
equations. We shall establish new comparison theorems in which we compare the
second order equation (E) with the first order differential inequalities in the sense
that the absence of the positive solutions of these first order inequalities yields
the oscillation of (E). Our technique permits us to eliminate some restrictions
that are usually imposed on the coefficients of the studied neutral differential
equations.
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Remark 1. The conditions τ ◦ σ = σ ◦ τ and τ ◦ η = η ◦ τ contained in the
hypothesis (H3) are satisfied for instance if τ(t), σ(t), and η(t) are of the same
form that is if e.g., τ(t) = αt, then at the same time σ(t) = βt, and η(t) = γt.

Remark 2. All functional inequalities considered in this paper are assumed to
hold eventually, that is they are satisfied for all t large enough.

Remark 3. Without loss of generality we can deal only with the positive solutions
of (E).

2. Main Results

It follows from (1.1) that the positive solutions of (E) have the following prop-
erty.

Lemma 1. If x(t) is a positive solution of (E), then the corresponding function
z(t) = x(t) + p(t)x(τ(t)) satisfies

(2.1) z(t) > 0, r(t)z′(t) > 0,
(

r(t)z′(t)
)

′

< 0,

eventually.

Proof. Assume that x(t) is a positive solution of (E). Then it follows from (E)
that

(

r(t)z′(t)
)

′

= −q(t)x(σ(t)) − v(t)x(η(t)) < 0.

Consequently, r(t)z′(t) is decreasing and thus either z′(t) > 0 or z′(t) < 0 even-
tually. If we let z′(t) < 0, then also r(t)z′(t) < −c < 0 and integrating this from
t1 to t, we obtain

z(t) ≤ z(t1) − c

∫ t

t1

1

r(s)
ds → −∞ as t → ∞.

This contradicts the positivity of z(t) and the proof is complete. �

For our intended references, let us denote

(2.2) Q(t) = min{q(t), q(τ(t))}, V (t) = min{v(t), v(τ(t))},
and

(2.3) Q1(t) = Q(t)
(

R(σ(t)) − R(t1)
)

, V1(t) = V (t)
(

R(η(t)) − R(t1)
)

,

where t ≥ t1 and t1 is large enough.

Theorem 1. Assume that the first order neutral differential inequality

(E2)

(

y(t) +
p0

τ0
y(τ(t))

)

′

+ Q1(t)y(σ(t)) + V1(t)y(η(t)) ≤ 0

has no positive solution. Then (E) is oscillatory.

Proof. Assume that x(t) is a positive solution of (E). Then the corresponding
function z(t) satisfies

z(σ(t)) = x(σ(t)) + p(σ(t))x(τ(σ(t)))

≤ x(σ(t)) + p0x(σ(τ(t))),(2.4)
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where we have used the hypothesis (H3) and similarly

(2.5) z(η(t)) ≤ x(η(t)) + p0x(η(τ(t))).

On the other hand, it follows from (E) that

(2.6)
(

r(t)z′(t)
)

′

+ q(t)x(σ(t)) + v(t)x(η(t)) = 0

and moreover taking (H1) and (H3) into account, we have

0 =
p0

τ ′(t)

(

r(τ(t))z′(τ(t))
)

′

+ p0q(τ(t))x(σ(τ(t))) + p0v(τ(t))x(η(τ(t)))

≥ p0

τ0

(

r(τ(t))z′(τ(t))
)

′

+ p0q(τ(t))x(σ(τ(t))) + p0v(τ(t))x(η(τ(t))).(2.7)

Combining (2.6) and (2.7), we are led to
(

r(t)z′(t)
)

′

+
p0

τ0

(

r(τ(t))z′(τ(t))
)

′

+ q(t)x(σ(t)) + p0q(τ(t))x(σ(τ(t)))

+ v(t)x(η(t)) + p0v(τ(t))x(η(τ(t))) ≤ 0,

which in view of (2.4), (2.5) and (2.2) provides

(2.8)
(

r(t)z′(t)
)

′

+
p0

τ0

(

r(τ(t))z′(τ(t))
)

′

+ Q(t)z(σ(t)) + V (t)z(η(t)) ≤ 0.

It follows from Lemma 1 that y(t) = r(t)z′(t) > 0 is decreasing and then

z(t) ≥
∫ t

t1

1

r(s)

(

r(s)z′(s)
)

ds ≥ y(t)

∫ t

t1

1

r(s)
ds

= y(t)
(

R(t) − R(t1)
)

.(2.9)

Therefore, setting r(t)z′(t) = y(t) in (2.8) and utilizing (2.9), one can see that
y(t) is a positive solution of (E2). This contradicts our assumptions and the
proof is complete. �

Remark 4. In the comparison principle in Theorem 1 we do not stipulate whether
(E) is equation with delay, advanced or mixed arguments, so that the obtained
results are applicable to all three types of equations. Moreover, our results hold
also for both cases when τ(t) ≤ t or τ(t) ≥ t. On the other hand, the comparison
theorem established in Theorem 1 reduces oscillation of (E) to the research of the
first order neutral differential inequality (E2). Therefore, applying the conditions
for (E2) to have no positive solution, we immediately get oscillation criteria for
(E).

Employing the additional conditions on the coefficients of (E), we can deduce
from Theorem 1 various oscillation criteria for (E). We shall discuss separately
the following two cases:

τ(t) ≥ t,(2.10)

τ(t) ≤ t.(2.11)

Theorem 2. Assume that (2.10) holds. If the first order differential inequality

(E3) w′(t) +
τ0

τ0 + p0
Q1(t)w(σ(t)) +

τ0

τ0 + p0
V1(t)w(η(t)) ≤ 0

has no positive solution, then (E) is oscillatory.
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Proof. We assume that x(t) is a positive solution of (E). Then Lemma 1 and the
proof of Theorem 1 imply that y(t) = r(t)z′(t) > 0 is decreasing and it satisfies
(E2). Let us denote w(t) = y(t) + p0

τ0
y(τ(t)). It follows from (2.10) that

w(t) ≤ y(t)

(

1 +
p0

τ0

)

.

Substituting these terms into (E2), we get that w(t) is a positive solution of (E3).
A contradiction. �

Adding the restriction that both σ(t) and η(t) are delay arguments, we get
easily verifiable oscillation criterion for the delay equation (E).

Corollary 1. Assume that (2.10) holds and

(2.12) σ(t) < t, η(t) < t.

If σ(t) ≤ η(t) and also

(2.13) lim inf
t→∞

∫ t

η(t)
(V1(s) + Q1(s)) ds >

τ0 + p0

τ0 e
,

or σ(t) ≥ η(t) and also

(2.14) lim inf
t→∞

∫ t

σ(t)
(V1(s) + Q1(s)) ds >

τ0 + p0

τ0 e
,

then (E) is oscillatory.

Proof. Theorem 2 ensures the oscillation of (E) provided that (E3) has no positive
solution. Assume that w(t) is a positive solution of (E3). Then w(t) is decreasing
and if σ(t) ≤ η(t), then w(σ(t)) ≥ w(η(t)). Setting the last inequality to (E3), we
see that w(t) is a positive solution of the differential inequality

(E∗

3) w′(t) +
τ0

τ0 + p0

(

Q1(t) + V1(t)
)

w(η(t)) ≤ 0.

But according to Theorem 2.1.1 from [10] the condition (2.13) guarantees that
(E∗

3) has no positive solution. This contradiction finishes the proof of the first
part of the corollary. The second part can be verify similarly and so the rest of
the proof can be omitted. �

For our incoming references, let us denote

(2.15) Q2(t) = Q(t)
(

R(t) − R(t1)
)

, V2(t) = V (t)
(

R(t) − R(t1)
)

,

where t ≥ t1, t1 is large enough and Q(t) and V (t) are defined in (2.2).
Putting on the constraint that both σ(t) and η(t) are the advanced arguments,

we get the following oscillation criterion for the advanced equation (E).

Theorem 3. Assume that (2.10) holds and

(2.16) σ(t) > t, η(t) > t.

If the first order advanced differential inequality

(E4) w′(t) − τ0

τ0 + p0
Q2(t)w(σ(t)) − τ0

τ0 + p0
V2(t)w(η(t)) ≥ 0

EJQTDE, 2011 No. 74, p. 5



has no positive solution, then (E) is oscillatory.

Proof. We assume that x(t) is a positive solution of (E). Then proceeding exactly
as in the proof of Theorem 1, we verify that the corresponding z(t) satisfies (2.8).
An integration of (2.8) from t to ∞ provides

(2.17) r(t)z′(t) +
p0

τ0
r(τ(t))z′(τ(t)) ≥

∫

∞

t
(Q(s)z(σ(s)) + V (s)z(η(s))) ds

Since r(t)z′(t) is decreasing and (2.10) holds, then

(2.18) r(t)z′(t) +
p0

τ0
r(τ(t))z′(τ(t)) ≤ r(t)z′(t)

(

1 +
p0

τ0

)

.

Combining (2.17) together with (2.18), we are led to

(2.19) r(t)z′(t)

(

1 +
p0

τ0

)

≥
∫

∞

t
(Q(s)z(σ(s)) + V (s)z(η(s))) ds.

Integrating the last inequality from t1 to t, we get

z(t) ≥ τ0

τ0 + p0

∫ t

t1

1

r(u)

∫

∞

u

(

Q(s)z(σ(s)) + V (s)z(η(s))
)

ds du

≥ τ0

τ0 + p0

∫ t

t1

(

Q(s)z(σ(s)) + V (s)z(η(s))
)

∫ s

t1

1

r(u)
duds.

Hence,

(2.20) z(t) ≥ τ0

τ0 + p0

∫ t

t1

(

Q2(s)z(σ(s)) + V2(s)z(η(s))
)

ds.

Let us denote the right hand side of (2.20) by w(t). Since z(t) ≥ w(t), we see
that w(t) is a positive solution of (E4). This contradicts our assumption and the
proof is complete now. �

Corollary 2. Assume that (2.10) and (2.16) holds. If σ(t) ≤ η(t) and also

(2.21) lim inf
t→∞

∫ σ(t)

t
(Q2(s) + V2(s)) ds >

τ0 + p0

τ0 e
,

or σ(t) ≥ η(t) and also

(2.22) lim inf
t→∞

∫ η(t)

t
(Q2(s) + V2(s)) ds >

τ0 + p0

τ0 e
,

then (E) is oscillatory.

Proof. It follows from Theorem 3 that (E) is oscillatory provided that (E4) has
no positive solution. Assume that w(t) is a positive solution of (E4). Then w(t) is
increasing and if σ(t) ≤ η(t), then w(σ(t)) ≤ w(η(t)). Setting the last inequality
to (E4), we see that w(t) is a positive solution of the differential inequality

(E∗

4) w′(t) − τ0

τ0 + p0

(

Q2(t) + V2(t)
)

w(σ(t)) ≥ 0.

But according to Theorem 2.4.1 from [10] the condition (2.21) guarantees that
(E∗

4) has no positive solution. This contradiction finishes the proof of the first
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part of the corollary. The second part can be verify similarly and so the rest of
the proof can be omitted. �

For our ultimate references, let us denote

Q3(t) =
Q(σ−1(t))

σ′(σ−1(t))

(

R(t) − R(t1)
)

,(2.23)

V3(t) = V2(t) exp

{

τ0

τ0 + p0

∫ η(t)

t
Q3(s) ds

}

,(2.24)

where t ≥ t1, t1 is large enough, Q(t) is defined in (2.2), while Q2(t) and V2(t)
are defined by (2.15) and σ−1(t) is the inverse function to σ(t).

Imposing the assumption that σ(t) is the delay and η(t) is the advanced argu-
ment, we establish the following oscillation criterion for equation (E) with mixed
arguments.

Theorem 4. Assume that (2.10) holds and

(2.25) σ′(t) > 0, σ(t) ≤ t, η(t) > t.

If the first order advanced differential inequality

(E5) w′(t) − τ0

τ0 + p0
V3(t)w(η(t)) ≥ 0

has no positive solution, then (E) is oscillatory.

Proof. We assume that x(t) is a positive solution of (E). Then proceeding exactly
as in the proof of Theorem 3, we verify that the corresponding z(t) satisfies (2.19).
On the other hand, using the substitution σ(s) = u, we see that

∫

∞

t
Q(s)z(σ(s)) ds =

∫

∞

σ(t)

Q(σ−1(u))

σ′(σ−1(u))
z(u) du

≥
∫

∞

t

Q(σ−1(u))

σ′(σ−1(u))
z(u) du.(2.26)

Combining (2.19) together with (2.26), one gets

(2.27) r(t)z′(t)

(

1 +
p0

τ0

)

≥
∫

∞

t

(

Q(σ−1(s))

σ′(σ−1(s))
z(s) + V (s)z(η(s))

)

ds.

Integrating the last inequality from t1 to t with applying the similar process as
in the proof of Theorem 3, we get

(2.28) z(t) ≥ τ0

τ0 + p0

∫ t

t1

(

Q3(s)z(s) + V2(s)z(η(s))
)

ds.

Let us denote the right hand side of (2.28) by y(t). Since z(t) ≥ y(t), we see that
y(t) is a positive solution of

(E6) y′(t) − τ0

τ0 + p0
Q3(t)y(t) − τ0

τ0 + p0
V2(t)y(η(t)) ≥ 0.

Now, we set

y(t) = exp

{

τ0

τ0 + p0

∫ t

t1

Q3(s) ds

}

w(t).
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Then in the view of (E6) it is easy to verify that w(t) is a positive solution of
(E5). This is a contradiction and the proof is complete. �

Corollary 3. Assume that (2.10) and (2.25) hold. If

(2.29) lim inf
t→∞

∫ η(t)

t
V3(s) ds >

τ0 + p0

τ0 e
,

then (E) is oscillatory.

Proof. Theorem 2.4.1 in [10] implies that the condition (2.29) guarantees that
(E5) has no positive solution and the assertion now follows from Theorem 4. �

Now, we turn our attention to the case when τ(t) is the delay argument. We
shall provide the results analogous to Theorems 2-4.

Theorem 5. Assume that (2.11) holds. If the first order differential inequality

(E7) w′(t) +
τ0

τ0 + p0
Q1(t)w(τ−1(σ(t))) +

τ0

τ0 + p0
V1(t)w(τ−1(η(t))) ≤ 0

has no positive solution, then (E) is oscillatory.

Proof. We assume that x(t) is a positive solution of (E). Then y(t) = r(t)z′(t) > 0
is a decreasing solution of (E2). We denote w(t) = y(t) + p0

τ0
y(τ(t)). What is

more (2.11) implies

w(t) ≤ y(τ(t))

(

1 +
p0

τ0

)

.

Substituting this into (E2), we get that w(t) is a positive solution of (E7). A
contradiction. �

Corollary 4. Assume that (2.11) holds and

(2.30) σ(t) < τ(t), η(t) < τ(t).

If σ(t) ≤ η(t) and also

(2.31) lim inf
t→∞

∫ t

τ−1(η(t))

(

Q1(s) + V1(s)
)

ds >
τ0 + p0

τ0 e
,

or σ(t) ≥ η(t) and also

(2.32) lim inf
t→∞

∫ t

τ−1(σ(t))

(

Q1(s) + V1(s)
)

ds >
τ0 + p0

τ0 e
,

then (E) is oscillatory.

Proof. We admit that w(t) is a positive solution of (E7). If σ(t) ≤ η(t), then
w(τ−1(σ(t))) ≥ w(τ−1(η(t))) and (E7) gives that w(t) is a solution of the differ-
ential inequality

(E∗

7) w′(t) +
τ0

τ0 + p0

(

Q1(t) + V1(t)
)

w(τ−1(η(t))) ≤ 0.

But according to Theorem 2.1.1 from [10] the condition (2.31) guarantees that
(E∗

7) has no positive solution. Therefore (E7) has no positive solution and The-
orem 5 provides the oscillation of (E). The case σ(t) ≥ η(t) can be treated
similarly. �

EJQTDE, 2011 No. 74, p. 8



For our future references, let us denote

(2.33) Q4(t) = Q(t)
(

R(τ(t)) − R(τ(t1))
)

, V4(t) = V (t)
(

R(τ(t)) − R(τ(t1))
)

,

where t ≥ t1, t1 is large enough and Q(t) and V (t) are defined in (2.2).

Theorem 6. Assume that (2.11) holds and

(2.34) σ(t) > τ(t), η(t) > τ(t).

If the first order advanced differential inequality

(E8) w′(t) − τ0

τ0 + p0
Q4(t)w(τ−1(σ(t))) − τ0

τ0 + p0
V4(t)w(τ−1(η(t))) ≥ 0

has no positive solution, then (E) is oscillatory.

Proof. We assume that x(t) is a positive solution of (E). Then it follows from the
proof of Theorem 1, that the corresponding function z(t) satisfies (2.17). Since
r(t)z′(t) is decreasing and (2.11) holds, then

(2.35) r(t)z′(t) +
p0

τ0
r(τ(t))z′(τ(t)) ≤ r(τ(t))z′(τ(t))

(

1 +
p0

τ0

)

.

Combining (2.17) together with (2.35), we obtain

(2.36) r(τ(t))z′(τ(t))

(

1 +
p0

τ0

)

≥
∫

∞

t
(Q(s)z(σ(s)) + V (s)z(η(s))) ds.

Multiplying the last inequality by τ ′(t)/r(τ(t)) and then integrating the result
from t1 to t, we get

z(τ(t)) ≥ τ0

τ0 + p0

∫ t

t1

τ ′(u)

r(τ(u))

∫

∞

u

(

Q(s)z(σ(s)) + V (s)z(η(s))
)

ds du

≥ τ0

τ0 + p0

∫ t

t1

(

Q(s)z(σ(s)) + V (s)z(η(s))
)

∫ s

t1

τ ′(u)

r(τ(u))
duds.

Hence,

(2.37) z(τ(t)) ≥ τ0

τ0 + p0

∫ t

t1

(

Q4(s)z(σ(s)) + V4(s)z(η(s))
)

ds.

Let us denote the right hand side of (2.37) by w(t). Since z(t) ≥ w(t), we see
that w(t) is a positive solution of (E8). This contradicts our assumption and the
proof is complete now. �

Remark 5. The assumptions imposed in Theorem 6 do not require for σ(t) and
η(t) to be advanced arguments. We only need for τ−1(σ(t)) and τ−1(η(t)) to
be advanced arguments. So the conclusions of Theorem 6 hold for all types of
equations i.e., advanced, delay, with mixed arguments and even if t − σ(t) or
t − η(t) oscillates.

Corollary 5. Assume that (2.11) and (2.34) hold. If σ(t) ≤ η(t) and also

(2.38) lim inf
t→∞

∫ τ−1(σ(t))

t

(

Q4(s) + V4(s)
)

ds >
τ0 + p0

τ0 e
,
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or σ(t) ≥ η(t) and also

(2.39) lim inf
t→∞

∫ τ−1(η(t))

t

(

Q4(s) + V4(s)
)

ds >
τ0 + p0

τ0 e
,

then (E) is oscillatory.

Proof. We let w(t) to be a positive solution of (E8). If σ(t) ≤ η(t), then
w(τ−1(σ(t))) ≤ w(τ−1(η(t))) and (E8) implies that w(t) satisfies

(E∗

8) w′(t) − τ0

τ0 + p0

(

Q4(t) + V4(t)
)

w(τ−1(σ(t))) ≥ 0.

But according to Theorem 2.4.1 from [10] the condition (2.38) guarantees that
(E∗

8) has no positive solution. This contradiction ensures that (E8) has no positive
solution and taking Theorem 6 into account, we see that (E) is oscillatory. The
case σ(t) ≥ η(t) is left to the reader. �

For our incoming references, let us denote

Q5(t) =
Q(σ−1(τ(t)))

σ′(σ−1(τ(t)))
τ ′(t)

(

R(τ(t)) − R(τ(t1))
)

,(2.40)

V5(t) = V4(t) exp

{

τ0

τ0 + p0

∫ τ−1(η(t))

t
Q5(s) ds

}

,(2.41)

where t ≥ t1, t1 is large enough, Q(t) is defined in (2.2), while V4(t) is defined by
(2.33).

Theorem 7. Assume that (2.11) holds and

(2.42) σ′(t) > 0, σ(t) ≤ τ(t), η(t) > τ(t).

If the first order advanced differential inequality

(E9) w′(t) − τ0

τ0 + p0
V5(t)w(τ−1(η(t))) ≥ 0

has no positive solution, then (E) is oscillatory.

Proof. We assume that x(t) is a positive solution of (E). Then proceeding exactly
as in the proof of Theorem 6, we verify that the corresponding z(t) satisfies (2.36).
On the other hand, using the substitution σ(s) = τ(u), we see that

∫

∞

t
Q(s)z(σ(s)) ds =

∫

∞

τ−1(σ(t))

Q(σ−1(τ(u)))

σ′(σ−1(τ(u)))
τ ′(u)z(τ(u)) du

≥
∫

∞

t

Q(σ−1(τ(u)))

σ′(σ−1(τ(u)))
τ ′(u)z(τ(u)) du.(2.43)

Combining (2.36) together with (2.43), one gets

r(τ(t))z′(τ(t))

(

1 +
p0

τ0

)

≥
∫

∞

t

(

Q(σ−1(τ(u)))

σ′(σ−1(τ(u)))
τ ′(u)z(τ(u)) + V (s)z(η(s))

)

ds.(2.44)

EJQTDE, 2011 No. 74, p. 10



Multiplying the last inequality by τ ′(t)/r(τ(t)) and then integrating the resulting
inequality from t1 to t, and using the similar process as in the proof of Theorem 6,
we get

(2.45) z(τ(t)) ≥ τ0

τ0 + p0

∫ t

t1

(

Q5(s)z(τ(s)) + V4(s)z(η(s))
)

ds.

Let us denote the right hand side of (2.45) by y(t). Since z(τ(t)) ≥ y(t), we see
that y(t) is a positive solution of

(E10) y′(t) − τ0

τ0 + p0
Q5(t)y(t) − τ0

τ0 + p0
V4(t)y(τ−1(η(t))) ≥ 0.

Now setting

y(t) = exp

{

τ0

τ0 + p0

∫ t

t1

Q5(s) ds

}

w(t),

we see in the view of (E10) that w(t) is a positive solution of (E9). This is a
contradiction and the proof is complete. �

Corollary 6. Assume that (2.11) and (2.42) hold. If

(2.46) lim inf
t→∞

∫ τ−1(η(t))

t
V5(s) ds >

τ0 + p0

τ0 e
,

then (E) is oscillatory.

Proof. According to Theorem 2.4.1 from [10] the condition (2.46) guarantees that
(E9) has no positive solution and the assertion now follows from Theorem 7. �

Example 1. We consider the second order neutral differential equation

(E11)
(

t1/2
[

x(t) + p0x(τ0t)
]

′

)

′

+
a

t3/2
x(αt) +

b

t3/2
x(βt) = 0,

where p0, τ0, α, β, a, b are positive constants.
If τ0 ≥ 1, then Q(t) = q(τ(t)) = a(τ0t)

−3/2 and V (t) = v(τ(t)) = b(τ0t)
−3/2.

It follows from Corollaries 1-3 that (E11) is oscillatory provided that at least one
of the following conditions is satisfied:

α, β < 1 and −(a
√

α + b
√

β) ln
(

max{α, β}
)

>
(τ0 + p0)

√
τ0

2 e
,

α, β > 1 and (a + b) ln
(

min{α, β}
)

>
(τ0 + p0)

√
τ0

2 e
,

α ≤ 1 < β and bβ

2a
√

α
(τ0 + p0)

√
τ0 ln β >

(τ0 + p0)
√

τ0

2 e
.

If τ0 ≤ 1, then Q(t) = q(t) = at−3/2 and V (t) = q(t) = bt−3/2. It follows from
Corollaries 4-6 that (E11) is oscillatory provided that at least one of the following
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conditions is satisfied:

α, β < τ0 and (a
√

α + b
√

β) ln

(

τ0

max{α, β}

)

>
τ0 + p0

2τ0e
,

α, β > τ0 and (a + b) ln

(

min{α, β}
τ0

)

>
τ0 + p0

2τ
3/2
0 e

,

α ≤ τ0 < β and b

(

β

τ0

)

2τ0a
√

α
τ0 + p0

ln
β

τ0
>

τ0 + p0

2τ
3/2
0 e

.

Consequently, we have covered oscillation of (E11) for all τ0 ∈ (0,∞) that is
for τ(t) = τ0t to be delay or advanced argument. Note that all above mentioned
known oscillatory criteria fail for (E11).

3. Summary

In this paper we have introduced new comparison theorems for investigation of
the oscillation of (E). The established comparison principles reduce oscillation of
the second order neutral equations to studying properties of various types of the
first order differential inequalities, which essentially simplifies examination of (E).
Our technique permits to relax restrictions usually imposed on the coefficients
of (E). So that our results are of high generality. Obtained results are easily
applicable and are illustrated on a suitable example.
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[6] J. Džurina, I. P. Stavroulakis, Oscillation criteria for second order delay differential equa-

tions, Appl. Math. Comput. 140 (2003), 445–453. Zbl 1043.34071
[7] L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation Theory for Functional Differential Equations,

Marcel Dekker, New York, 1994. Zbl 0821.34067
[8] S. R. Grace, B. S. Lalli, Oscillation of nonlinear second order neutral delay differential

equations, Rad. Mat. 3 (1987), 77–84. Zbl 0642.34059
[9] M. K. Grammatikopoulos, G. Ladas, A. Meimaridou, Oscillation of second order neutral

delay differential equation, Rad. Mat. 1 (1985), 267–274. Zbl 0581.34051
[10] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations

with Deviating Arguments, Marcel Dekker, New York, 1987. Zbl 0832.34071
[11] I. T. Kiguradze, T. A. Chaturia, Asymptotic Properties of Solutions of Nonatunomous

Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht 1993. Zbl 0782.34002
[12] T. Li, Z. Han, C. Zhang, S. Sun, Oscillation theorems for second-order neutral functional

differential equations, J. Appl. Analysis, to appear.
[13] X. Lin, X. H. Tang, Oscillation of solutions of neutral differential equations with superlinear

neutral term, Appl. Math. Lett. 20 (2007), 1016–1022. Zbl 1152.34364

EJQTDE, 2011 No. 74, p. 12



[14] L. H. Liu, Y. Z. Bai, New oscillation criteria for second-order nonlinear neutral delay

differential equations, J. Comput. Appl. Math. 231 (2009), 657–663. Zbl 1175.34087
[15] M. Hasanbulli, Y. Rogovchenko, Oscillation criteria for second order nonlinear neutral

differential equations, Appl. Math. Comput 215 (2010), 4392–4399. Zbl pre05688917
[16] Y. Rogovchenko, F. Tuncay, Oscillation criteria for second order nonlinear differential

equations with damping, Nonlinear Anal. TMA 69 (2008), 208–221. Zbl 1147.34026
[17] R. Xu, Y. Xia, A note on the oscillation of second-order nonlinear neutral functional dif-

ferential equations, J. Contemp. Math. Sciences, 3 (2008), 1441–1450. Zbl 1176.34078
[18] R. Xu, F. Meng, Some new oscillation criteria for second order quasi-linear neutral delay

differential equations, Appl. Math. Comput. 182 (2006), 797–803. Zbl 1115.34341
[19] R. Xu, F. Meng, Oscillation criteria for second order quasi-linear neutral delay differential

equations, Appl. Math. Comput. 192 (2007), 216–222. Zbl 1131.34319

(Received November 28, 2010)
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